

Satellite Activities at CMA

Di XIAN, Jian LIU

National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA)

Outline

- Fengyun Program Overview
- Current Missions and Services
- Latest Progress
- Future Programs

1. Fengyun Program Overview

Chinese FENGYUN Meteorological Satellites

Launched Satellites

Since Jan. 1969, China began to develop his own meteorological Satellite									
Leo	Launch Data		Geo	Launch Data					
FY-1A	Sept. 7, 1988		FY-2A	Jun. 10, 1997					
FY-1B	Sept. 3, 1990		FY-2B	Jun. 25, 2000					
FY-1C	May 10, 1999		FY-2C	Oct. 18, 2004					
FY-1D	May 15, 2002		FY-2D	Dec. 8, 2006					
FY-3A	May 27, 2008		FY-2E	Dec. 23, 2008					
FY-3B	Nov. 5, 2010		FY-2F	Jan. 13, 2012					
FY-3C	Sept. 23, 2013		FY-2G	Dec. 31, 2014					
FY-3D	Nov. 15, 2017		FY-4A	Dec. 11, 2016					
			FY-2H	Jun. 5, 2018					

Overall Development Strategy (4 stages):

- 1) 1970 1990: Conducting satellite research and development
- 2) 1990 2000: Implementing transition from R&D to operational
- **3) 2000 2010:** Implementing transition from 1st generation to 2nd generation
- 4) 2010 2020: Pursuing accuracy and precision of satellite measurements

Important Component of WMO Space Program

- reliable and sustained observation in operation
- open data policy to free access

2. Current Missions and Services

Current FengYun Constellation

FengYun Programs: 8 in orbit, 7 in operation, 1 in orbital testing (FY-2H) Joint programs: Tansat, GF-4

Current Instruments for EO

Satellite		No. of Instruments	Name in Abbrev.			
FY-1	FY-1 A/B	2	5-channel VIRR			
	FY-1 C/D	2	10-channel VIRR			
FY-2	FY-2 A/B	1	3-channel VISSR			
	FY-2 C/D/E	1	5-channel VISSR			
FY-3	FY-3 A/B	10	10-channel VIRR			
			MERSI			
			IRAS			
			MWTS			
			MWHS			
			MWRI			
			SBUS			
			тои			
			ERM			
			SIM			
	FY-3C	11	GNOSS			
	FY-3D	10	HIRAS			
			GAS			
	FY-4A	3	AGRI			
FY-4			GIIRS			
			LMI			

Fengyun GEO Constellation

4 in operation

FY-2E: Full Disk (86.5° E) FY-2G: Full Disk (99.5° E) FY-4A: Full Disk + Regional Rapid (105° E) FY-2F: Regional (112° E)

1 in orbit test

FY-2H (79° E)

Fengyun Polar Constellation

In Primary I Operation (Global) : FY-3C + FY-3D, global coverage 4 times per day

FY-3C LTC 10:30 AM

FY-3D LTC 13:40 PM⁹

FengYun Satellite Data Service

Fengyun DB Users

More than 45 International DB Users

Web Portal Service

Application Tools

Application Area

Latest progress on CMA satellite programes

- 1. FY-4A
 - The first GEO. meteorological satellite of new generation
 - Launched on Dec.11, 2016
 - Official operation on May 1, 2018
- 2. FY-2H
 - The last one of FY-2 series
 - Launched on June 5, 2018
 - To support IOC and serve for the belt & road countries

3. FY-3D

- A new operational afternoon orbit LEO. satellite, will co-work with FY-3C in morning orbit.
- Launched on Nov. 15, 2017.
- On-orbit commission test completion on Aug. 6, 2018

FY-4A: Launched on 11 Dec, 2016

FY-4 is the CMA new generation meteorological geo-satellite series, expected to support various weatherrelated services, including weather forecasting, disaster prevention and reduction, and monitoring and warning of space weather.

Spacecraft:

- 1. Launch Weight: approx 5300kg
- 2. Stabilization: Three-axis
- 3. Attitude accuracy: 3"
- 4. Bus: 1553B+Spacewire
- 5. Raw data transmission : X band
- 6. Output power: >= 3200W
- 7. Design life: over 7 years

Ins	strument	Purposes			
	AGRI: Advanced Geosynchronous Radiation Imager	14 -channel Earth images			
	GIIRS : Geostationary Interferometric InfraRed Sounder	Clear-sky atmospheric temperature and humidity profiles			
	LMI : Lightning Mapping Imager	Lightning distribution map in China area			
	SEP: Space Environment Package	Space electric and magnetic environment information			

FY-4A observation mode

AGRI:

- Every hour: Full disk (00:00/01:00/02:00...23:00)
- Every 3 hour: 3 continuously Full disk(Eg.23:45-00:00-00:15)
- Rest: China area, (every 5 minutes)

GIIRS:

- Every 3 hour: Full disk clear sky observation
- Every 15 minutes: China area clear sky observation

LMI:

- 500 frames per second
- 21 Mar.-22 Sep: Northern Hemisphere
- 22.Sep-Next 21 Mar: Southern Hemisphere

FY-4A Baseline products

	FY-4A	FY-2				
Cloud	Cloud Mask Cloud Top Temperature Cloud Top Height Cloud Top Pressure Cloud Type Cloud Phase Daytime cloud optical and microphysical properties Nighttime cloud optical and microphysical properties	Cloud Mask Cloud Top Temperature Cloud Classification Cloud Cover Ratio Cloud Total Amount				
Atmosphere	Quantitative Precipitation Estimate Layer Precipitable Water Atmosphere Motion Vector Atmospheric Temperature Profile Atmospheric Humidity Profile Cloudy Vertical Temperature Profile Cloudy Vertical Moisture Profile Aerosol Detection Atmosphere Instability Index Convective Initiation Tropopause Folding Turbulence Prediction Total Ozone Amout Ozone Profile	Precipitation Index Quantitative Precipitation Estimate Clear sky Total Precipitable Water Atmosphere Motion Vector Cloudy Vertical Moisture Profile Upper Tropopause Humidity				
Radiation	Outgoing Long wave Radiation Surface Solar Irradiance Downward Longwave Radiation Upward Longwave Radiation Reflected Shortwave Radiation	Outgoing Long wave Radiation Surface Solar Irradiance				
Surface	Sea Surface Temperature (Skin) Land Surface Temperature Snow Cover Land Surface Albedo Land Surface Emissivity Evapotranspiration products	Sea Surface Temperature (Skin) Land Surface Temperature Snow Cover				
Environment	Dust Smoke Detection Fire/Hot Spot Characterization Fog Detection	Dust Index Fire/Hot Spot Characterization Heavy Fog Detection				
Lightning	One Minute Lightning Quantitative Product (including flash group event) Lightning Jump Identification Product Flash Daily Density					
Space	High-energy particle distribution Magnetic Field Intensity Space Environment Effect	19				

AGRI: Advance Geo. Radiation Imager

February 20th, 2017 05:15 (UTC)

FY-4A GEOSTATIONARY METEOROLOGICAL SATELLITE

The First Images of FY-4A AGRI

February 20th, 2017 05:15(UTC)

20

GIIRS: First Geo. Interferometric Infrared Sounder

LMI: Lightning Mapping Imager

Acquire lightning distribution maps over specific region

Spatial	about 7.8Km at
resolution	SSP
Sensor size	400×300 ×2
Wave-length at	777.4nm
center	
Band-width	1nm±0.1nm
Detection	>90%
efficiency	
False-alarm ratio	<10%
Dynamic range	>100
SNR	>6
Frequency of	2ms
frames	
Quantization	12 bits
Measurement	10%
Error	

AGRI + GIIRS + LMI

1. FY-4A lightning frequency map: strong convective cloud clusters often acompany with obvious lightnings.

2. FY-4A high spatial resolution imager: finer structure and texture of strong convective cloud cluster; and clearer small scale cumulus line.

3. Cloud free atmospheric profile acquired from GIIRS can be used for

FY-2H: Launched on 5 Jun, 2018

FY-2H : To better support IOC and serve the Belt & Road countries

On June 10, at SCO summit in Qingdao, Chinese President Xi Jinping made a commitment that China will provide meteorological services by using FY-2 meteorological satellite."

- Launched on June 5, 2018
- positioned at 79° E and operational by September, 2018

FY-2H coverage at 79° E

CMA Announced "Emergency Support Mechanism for International Users of Fengyun Meteorological Satellites in Disaster Prevention and Mitigation" on April 24, 2018

- To serve the countries along the "Belt and Road" in a timely manner. These countries may raise a request for the activation of the mechanism through their respective Permanent Representatives with WMO or their designated focal points.
- Once the request is approved, CMA will command the on-duty FY satellite for frequent and targeted observations per 5-6 minutes over affected areas.
- The images and products will be transmitted to the requesting applicant through CMACast, internet and direct satellite broadcast reception.

Announce "Emergency Support Mechanism for International Users of <u>Fengyun</u> Meteorological Satellites in Disaster Prevention and Mitigation"

> 2018年4月24日 April, 24th, 2018

中国·哈尔滨 Harbin, China 26

18 Authorized FY ESM Users

As of September 2018, there are 18 Authorized FY ESM users, including Indonesia, Vietnam, Laos, Myanmar, Thailand, Philippine, Malaysia, Singapore, Kazakhstan, Kyrgyzstan, Pakistan, Russia, Tajikistan, Uzbekistan, Afghanistan, Iran, Mongolia, Sri Lanka

风云卫星国际用户防灾减灾机制授权证书 Authorization of Emergency Response Mechanism for International Users of FengYun Satellites for Disaster Management

FY-3D: Launched on 15 Nov, 2017

Parameters	Satellite Specification					
Orbit type	Near-polar sun-synchronous					
	orbit					
Orbital altitude	836 Km					
Orbital inclination	98.75°					
Precision orbit	Semi-major axis deviation:					
	$ \Delta a \le 5$ Km					
	Orbital inclination deviation:					
	Δi ≤0.1 [°]					
	Orbital eccentricity ≤ 0.003					
Repeat cycle	5.5d (Design range is in 4-10					
	d)					
Eccentricity	≤0.0025					
Local time drift at	15 min within 4 yrs					
ascending node						
Launch window	local time at ascending node:					
	13:40 - 14:00					
Design lifetime	5 yrs for design, 4 yrs for					
	assessment					

- 4 new instruments (HIRAS, GAS, WAI, IPM)
- 1 important improved instruments (MERSI-2)
- **5** successive Instruments

Payload Name	Channel Numbers with Spectral Coverage					
MEdium Resolution Spectral Imager (MERSI-2)	25 (0.413 – 12 μm)					
Hyperspectral InfraRed Atmospheric Sounder (HIRAS)	1370 (3.92 – 15.38 μm)					
MicroWave Radiation Imager (MWRI)	10 (10.65 – 89 GHz)					
MicroWave Temperature Sounder (MWTS-2)	13 (50.3 – 57.29 GHz)					
MicroWave Humidity Sounder (MWHS-2)	15 (89.0 – 183.31 GHz)					
GNSS Occultation Sounder (GNOS)	29 ()					
Greenhouse-gases Absorption Spectrometer (GAS)	5540 (0.75 – 2.38 μm)					
Wide angle Aurora Imager (WAI)	1 (140 – 180 nm)					
Ionospheric PhotoMeter (IPM)	3 (130 – 180 nm)					
Space Environment Monitor (SEM)	25 ()					

Performance are improved significantly for the key characteristics, such as S/N, calibration accuracy, etc. 29

- In Orbit testing began on December 12th, 2017;
- the in orbital testing has been finished.
 The results show that the satellite platform and main payloads functions well, and meets the requirements;

30

Global data latency within 2 hours (80%) less than 1 hour

FY-3D Baseline products

Cloud & Radiation	Atmosphere	Land Surface	Sea Surface	Space Weather
Cloud mask,AtCloud amount,productCloud type,DuCloud phase,AeCloud topdetemperature,RaCloud top height,AtCloud opticalhudepth,(GCloud physicalAtparameters,terCloud liquidMwater,ProductCloud liquidMwater,FoIce water path,Outgoinglongwaveradiation	tmospheric total recipitable water, ust storm index, erosol optical epth, ain detection, tmospheric umidity profile SNOS,VASS), tmospheric emperature profile SNOS,VASS), recipitation, Aicrowave rain rate, og detection	Global fire detection, Land cover, Land surface reflectance, Land surface temperature, Soil moisture, NDVI, Snow cover, Snow cover fraction, LAI, FPAR, NPP, Albedo, Snow depth, Snow water equivalent	SST, Sea-Ice cover, Ocean color, Chlorophyll, Sea surface wind speed	radiation flux of high energy particles, surface electric potential radiation dose, GNOS Electron Density Profile, Ionospheric O/N2 Column Ratio, Aurora Mapping Products

Global True-color Image for Tropical Cyclone Monitoring from FY-3D Satellite 11 September, 2018

On Sep. 11, 2018, the global tropical cyclones (TCs) initialize and develop actively and all the named ones is eight. In particular, four TCs are within the Pacific and Atlantic Oceans respectively, two of which directly influence China and its surroundings.

True Color Image in Caribbean Sea from MERSI II with 250m

True Color Image in Arbian Peninsula from MERSI II with 250m

Temperature Profile from HIRAS-MWTS-WMHS

Typhoon Mangkhut (1822) 2 hour before landing

Global 8-day-mean product: MERSI II and MODIS land aerosols

Aerosol_Optical_Depth_Land_Mean_Mean

MODIS/Aqua MYD08_E3.A2018001.006.2018011145021.hdf

 01Jan2018
 Aerosol_Optical_Depth_Land_Mean_Mean
 Jan2018

 0.60
 0.60
 0.40

 0.20
 0.20
 0.20

MERSI2/FY3D

MERSI2/FY3D FY3D_MERAOD_E1d.201801.Beta.hdf

MODIS/Aqua

0.0

Good consistency in global distribution and AOD of pollution sources.

Snow depth/SEW

NSMO FY3C MSND SNE Orbit Product MISSING RAIN COLD RAIN ICE Land Snow WATER 65 105 120 (mm) 0 5 25 45 85

FY-3D MWRI SIC North Daily Product: 2018-01-01

FY-3D MWRI SIC South Daily Product

Aurora in the North Polar from WAI

4. Future Programs

National Program for Fengyun Meteorological Satellite from 2011-2020

6 satellites will be launched within this decade

National Space Infrastructure Program for Meteorological Satellites (from 2020 to 2025) approved by the State Council

Satellite	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
FY-4B												
FY-4C												
FY-4(MW)												

In the next 10 years, CMA will have 6 GEO and 7 LEO main operational satellites, which means the updates for the satellite observation network will be completed.

The LEO realizes the network of covering the EM, AM and PM satellite observation, and the time limit of global data updating has been raised from 6 hours to 3 hours. Fine detection of elements such as precipitation and greenhouse gas.

The new pattern of GEO observation: imaging, hyper-spectral and microwave sounding. FY-4B: rapid scan(min), FY-4C: five minutes disk image, sounding abilities, whole disk lightening mapper.

